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Abstract Optimization problems aim to find the best solution from a set of potential alternatives while maximizing or minimizing key metrics. Cer-
tain optimization problems exhibit impracticality in deriving exact solutions due to the intricate or colossal solution spaces. Metaheuristic approaches,
inspired by natural phenomena, employ strategic, often stochastic, search processes to explore the vast solution spaces of optimization problems, fre-
quently finding near-optimal solutions within a relatively reasonable computational timeframe. Nonetheless, the ”No Free Lunch” theorem asserts
that no single algorithm can excel across all optimization problems, thereby necessitating meticulous adaptation, tuning, or hybridization of individual
algorithms for effective problem addressing. Traditional methods for algorithm classification and selection are progressively found lacking in navi-
gating through the ever-expanding domain of optimization methodologies. Recently, methods grounded in complex network theory have begun to
be explored as potential avenues to negotiate the challenges tied to categorizing and selecting optimization algorithms. By mapping the relationships
and performance linkages between various algorithms and problem types, these approaches aspire to equip practitioners with profound insights that
adeptly guide the selection, adaptation, and application of algorithms to specific optimization problems.
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Table 1: Nomenclatures used in this paper.
Nomenclature description
TSP Traveling Salesman Problem
VRP Vehicle Routing Problem
GAs Genetic Algorithms
DE Differential Evolution
SE Spherical Evolution
ACO Ant Colony Optimization
PSO Particle swarm optimization
SA Simulated Annealing
PIN Population Interaction Network

1 Introduction

Optimization problems involve seeking the best solution from
a range of possible choices. These problems find extensive ap-
plications in mathematics, engineering, computer science, and
numerous other domains. The objective of addressing optimiza-
tion problems is tomaximize orminimize a target function under
certain constraints. This function could relate to cost, profit, ef-
ficiency, or various other metrics. Such problems are ubiquitous
in real-world applications like logistics, manufacturing, finance,
andmany other sectors. However, not all optimization problems
are easy to solve. Some, due to their inherent complexity, make it
challenging to obtain exact solutions, especially those with high
degrees of intricacy or vast solution spaces. For these issues,
finding an exact solution might demand exponential computa-
tional time, rendering them impractical to solve within a reason-
able timeframe.

Metaheuristic approaches have emerged as effective strategies
for addressing the daunting challenges posed by complex op-
timization problems. These approaches, which are inspired by
various phenomena in nature, such as the evolution of species,
the behavior of ant colonies, or the cooling process of solids, em-
ploy strategic, often stochastic, search processes to explore the
vast solution spaces of optimization problems. By doing so, they
can often find near-optimal solutions in a comparatively reason-
able amount of computational time, particularly for problems
where an exact solution is practically elusive due to its high com-
putational cost.

However, the ”No Free Lunch theorem” [1] poses a signifi-

cant theoretical impediment to the universal application ofmeta-
heuristics. It posits that no one algorithm is universally superior
across all possible optimization problems. Thus, despite the gen-
eral efficacy of metaheuristics, individual algorithms still need
to be meticulously adapted, tuned, or hybridized to address spe-
cific problems effectively. The necessity for such tailored adjust-
ments arises from the varied nature and structure of different
optimization landscapes.

In the deluge of algorithms, many with their unique configu-
rations and specialties, categorizing and determining the most
apt for a given scenario has become an exceedingly intricate
task. The traditional methods of classification and selection of
algorithms are increasingly found to be insufficient in navigat-
ing through the burgeoning domain of optimization methodolo-
gies. Thus, choosing, adapting, and improving good algorithms
for specific problems have become progressively difficult, lead-
ing the research on metaheuristics into an ”alchemy” dilemma
where devising effective algorithms often involves a substantial
amount of experimentation, trial, and error.

In recent years, methods based on complex network theory
have begun to be explored as potential pathways to navigate
through the challenges associated with categorizing and select-
ing metaheuristic algorithms. Complex network-based meth-
ods seek to understand the manifold interconnections and de-
pendencies among different algorithms, problem instances, and
performance metrics, providing a more nuanced view of the
metaheuristic algorithm landscape. Through mapping the rela-
tionships and performance linkages between various algorithms
and problem types, such approaches aim to furnish practitioners
with insights that can guide the selection, adaptation, and ap-
plication of algorithms to specific optimization problems more
adeptly. Table 1 shows the nomenclatures used in this paper.

2 Related Works

Some classic examples of problems hard to precisely solve in-
clude: Traveling Salesman Problem (TSP) [2]: Given a series
of cities and distances between each pair, the goal is to identify
the shortest possible route visiting each city once and return-
ing to the starting point. Knapsack Problem [3]: With a set of
items, each having a weight and value, the challenge is selecting
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items to pack into a fixed-capacity bag so that the total value is
maximized without exceeding the weight limit. Job Scheduling
Problem [4]: Considering limited machines and a series of jobs,
each with a processing time and a deadline, the objective is to
determine the order of job execution to minimize total delay or
maximize the number of jobs completed on time. Graph Color-
ing Problem [5]: Given a graph, the aim is to color each node
using the fewest colors possible, ensuring that no two adjacent
nodes share the same color. Integer Programming [6]: Similar to
linear programming, but the decision variables are restricted to
integer values. This adds complexity since standard linear pro-
gramming techniques aren’t applicable. Vehicle Routing Prob-
lem (VRP) [7]: Given customer locations and demands and one
ormore distribution centerswith vehicles, the goal is to find opti-
mal routes to service all customers, adhering to vehicle capacity
limits and other potential constraints. All the aforementioned
problems are classified as NP-hard [8].

Furthermore, there are practical issues that, although their
difficulty might differ from traditional NP-hard or NP-complete
problems, present significant computational challenges. An ex-
ample is wind farm layout optimization [9], aiming to determine
optimal positions for wind turbines to maximize power output
andminimize system cost. The problem is intricate because rela-
tive turbine positions can influence turbulence effects on each, af-
fecting performance. Depending on constraints (like land avail-
ability, roads, and other infrastructure), the problem’s difficulty
may vary. While the problem is complex, there isn’t a consen-
sus on whether it’s formally classified as NP-hard. A similar ex-
ample involves neuron parameter training [10]. Training neural
networks is a non-convex optimization issue, meaning multiple
local minima could exist. Seeking a global minimum is tremen-
dously challenging, but many local minima can offer decent per-
formance for practical tasks.

There are currently popular solutions addressing some of the
above problems. For certain problems, polynomial-time exact
algorithms might exist. For example, branch and bound algo-
rithms can handle some small-scale problems [11]. Heuristic
methods tailored to a specific problem can bemore effective than
generic metaheuristic algorithms. For some problems, special-
ized greedy algorithms [12] or local search algorithms [13] can
be designed based on structural characteristics. For large-scale
problems, decomposing them into smaller sub-problems is an
option. Approaches like column generation [14], Lagrangian
relaxation [15], and Benders decomposition [16] are examples.
Notably, in recent years, deep learning methods, especially rein-
forcement learning [17], have been applied to some combinato-
rial optimization problems, yielding impressive results. Neural
networks and reinforcement learningmethods have been used to
generate approximate solutions for problems like TSP and VRP
[18,19]. Parallel and distributed computing methods also exist,
employing multiple processors or computers to simultaneously
tackle different parts of a problem or search space, accelerat-
ing the solving process. However, the methods mentioned are
more suited for solving small-scale instances or those with spe-
cific structures. For NP-hard or NP-complete issues, and highly
challenging complex problems, metaheuristic algorithms often
prove the most effective solution.

3 Metaheuristic algorithms

Metaheuristic algorithms are advanced heuristic algorithms de-
signed to tackle large-scale or intricate optimization problems
[20]. A defining characteristic of these algorithms is that they are
not solely designed for specific problems but provide a frame-
work that can be employed across various problems. They of-
ten attempt to mimic processes found in biology, society, or
other natural phenomena. Some well-known metaheuristic al-

gorithms include: Genetic Algorithms (GAs) [21] are inspired
by the process of natural selection and genetics. This method
uses ”chromosomes” to encode potential solutions and produces
new solutions via operations such as crossover, mutation, and
selection. On the basis of GA, two algorithms, Differential Evo-
lution (DE) [20] and Spherical Evolution (SE) [22], were pro-
posed. The DE family of algorithms has proven notably success-
ful [23], with its improved version regularly clinching top po-
sitions in the IEEE CEC competition [24]. The SE algorithm has
extremely high potential in more complex and high-dimensional
problems. Ant Colony Optimization (ACO) [25] is inspired by
the process of ants searching for food. Ants communicate by re-
leasing and following pheromone trails to identify the shortest
paths. Particle Swarm Optimization (PSO) [26] mimics the so-
cial behavior of bird flocks or schools of fish. Each ”particle”
moves, updating its velocity and position based on its individ-
ual and the swarm’s best-knownpositions. SimulatedAnnealing
(SA) [27] is inspired by the cooling process of solids and crys-
tal arrangements. Solutions undergo random alterations under a
controlled temperature parameter, permitting acceptance of less
optimal solutions early in the search to escape local optima. In
addition, the Evolution Strategy with Covariance Matrix Adap-
tation [28] has been highly praised by researchers due to its com-
plete mathematical foundation.

The broad attention and application of metaheuristic algo-
rithms stem from theirmany advantages: They are generally uni-
versal and suitable for diverse problems without extensive cus-
tomization. They often provide reasonable solutions, irrespec-
tive of specific problem structures or characteristics. Some can
adjust their strategies or parameters during the search, adapt-
ing to the problem’s nature [29]. For NP-hard problems or those
where precise solutions are unattainable in a reasonable time-
frame,metaheuristics can often find satisfactory approximations.
They can be coupledwith other algorithms, like local searches or
greedy strategies, to yield improved solutions. Compared to ba-
sic local search methods, they tend to explore the solution space
more extensively, offering a greater chance of identifying global
or near-optimal solutions. Some, like GA or PSO, have parallel
structures, facilitating parallel searches on multi-processors or
clusters [30].

3.1 Improvements in metaheuristics

Due to their impressive performance in addressing various real-
world optimization and decision-making problems, enhance-
ments and studies of these algorithms continue to captivate re-
searchers and practitioners alike. Some key areas of focus in cur-
rent metaheuristic research include:

1) Parameter tuning [32]: This method is vital for optimiz-
ing metaheuristic performance. Adaptive methods, hyper-
parameter optimization, and Automated Machine Learning
(AutoML) strategies have been employed to automatically
identify optimal parameters. It should be emphasized that
powerful metaheuristics generally require the use of various
parameter adaptation techniques.

2) Hybrid methods [33,34]: Combining different metaheuris-
tics or merging them with other optimization strategies like
linear programming or local searches can enhance both
search efficiency and solution quality. Such improved tech-
niques have become increasingly difficult to publish in high-
quality journals, but in fact, many new competitive meta-
heuristics are also based on a mixture of various mecha-
nisms.

3) Memetic computing manner [35,36]: Memetic computing
delves into intricate formations arising from the blend of
basic entities and memes. As they evolve and interact,
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Figure 1: Some classification methods of metaheuristic algorithms [31].

they form sophisticated systems proficient in addressing
challenges. The foundational principle of this area lies in
memetic algorithms, a category of optimization techniques
marked by their evolutionary underpinnings and an assort-
ment of localized search mechanisms.

4) Parallelization and distributed computation: Given the in-
herent parallelism in manymetaheuristics (e.g., GAs, PSO),
leveragingmodern computational hardware for parallel and
distributed computing is pivotal.

5) Multi-objective optimization [37]: Many real-life problems
encompass multiple conflicting objectives. Multi-objective
versions of several metaheuristics, like multi-objective GAs
or multi-objective PSO, have been developed in response.

6) Theoretical analysis [38 – 41]: Even though metaheuristics
are largely empirical, theoretical analysis remains a crucial
area of study. This can aid in understanding algorithm be-
havior and direct improvements.

7) Application-driven research: New real-world applications
and challenges often stimulate the development or refine-
ment of existingmetaheuristics. For instance, new problems
in the domains of transportation, logistics, and energy sys-
tem optimization have galvanized algorithmic research.

8) Integration with machine learning [42]: The convergence of
machine learning and metaheuristics, especially the amal-
gamation of deep learning and reinforcement learning, has
emerged as a hot research topic recently. Examples include

employing neural networks to guide search strategies or us-
ing reinforcement learning to tweak algorithm parameters.

3.2 Classification of metaheuristics

Moreover, with the emergence of more and more metaheuris-
tic algorithms, selecting a suitable algorithm for practical prob-
lems has become increasingly complex. To determine which al-
gorithm is best for a particular problem, benchmark testing of
multiple algorithmsmight be necessary, which could require sig-
nificant time and computational resources. Classifying meta-
heuristic algorithms based on their characteristics can help in
systematically and specifically understanding and choosing the
appropriate algorithm. Generally, metaheuristic algorithms are
optimization algorithms inspired by natural phenomena, they
can be grouped into several basic categories based on their op-
erations and features: Population-based algorithms: These algo-
rithms typicallymaintain a set of potential solutions and improve
these solutions through iterative evolution. The ”quality” or ”fit-
ness” of the solutions determines their probability of survival
and reproduction in subsequent iterations. Examples include
GAs, PSO, and DE. Simulation-based algorithms: These algo-
rithms search the solution space by simulating a certain natural
or physical process. An example is SA, which simulates the an-
nealing process of solids. Memory or learning-based algorithms:
These algorithms accumulate knowledge during the search pro-
cess and use this knowledge to guide subsequent searches. An
example is the ACO, where ants use pheromone trails when
searching for food paths. Local search-based algorithms: These
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(a) Poisson degree distribution. (b) power-law degree distribution.

Figure 2: Two typical population interaction networks of metaheuristics.

algorithms start from an initial solution and then search for bet-
ter solutions in their neighborhood. An example is Tabu Search
[43]. Cooperation and competition-based algorithms: These al-
gorithms often simulate interactions between individuals who
can cooperate, compete, or do both to achieve some objective.
Examples include artificial life and evolutionary strategies [44].
Additionally, some literature categorizes metaheuristics into al-
gorithms based on evolution, algorithms based on swarm intel-
ligence, algorithms based on human behavior, and algorithms
based on physics and chemistry [45]. Some other classification
methods of metaheuristic algorithms are shown in Fig. 1. Clas-
sifying metaheuristic algorithms by their inherent characteris-
tics can aid in understanding the advantages and applicability of
each algorithm, helping to choose the right algorithm for specific
problems. For instance, for problems requiring global search ca-
pabilities, population-based algorithms might be more suitable,
while for solutions that need fine-tuning, local search-based al-
gorithms may be better.

4 Challenges faced by metaheuristic research

The proliferation of improvements to metaheuristic algorithms
and the continuous emergence of new metaheuristic algorithms
have also ignited controversy. Particularly, many of the recently
proposed metaheuristics draw inspiration from natural or social
phenomena, such as fire propagation, animal migration, and hu-
man social behavior. While the names and concepts of these al-
gorithms might seem appealing, the pivotal question is whether
they truly provide novel and effective means to address real-
world problems. Do these new algorithms truly outperform es-
tablished, time-tested ones such as GAs, SA, and ACO? Only
when a new algorithm consistently demonstrates superior per-
formance across various benchmark problems and practical ap-
plications can it be deemed valuable. Does the new algorithm
bring genuinely innovative ideas, or is it a slight variation of ex-
isting methods? To gain widespread acceptance, a new algo-
rithm shouldmake distinct contributions and demonstrate inno-
vative elements. Moreover, although most metaheuristic algo-
rithms are empirical in nature, providing some theoretical anal-
ysis and proof for the new algorithm can bolster its credibility.
This can help explain why the algorithm is effective and under
which conditions it might excel. Another important evaluation
criterion for a new algorithm is its universality—does it apply
across different problems or is it tailored for specific challenges?
Generally, a versatile algorithm effective for a range of problems
is more well-received. Lastly, is the new algorithm easily un-

derstood and implemented? An overly complex algorithm, even
with marginal performance advantages, may not achieve broad
adoption, especially if it’s more intricate or harder to implement
than existing algorithms.

These classifications of metaheuristics also have certain limi-
tations. Many metaheuristic algorithms might possess charac-
teristics from multiple categories. For instance, a population-
based algorithmmight also have some formof local searchmech-
anism, making it challenging to classify it under a specific cat-
egory. Moreover, classifying algorithms into a few fixed cate-
gories might restrict our understanding of their potential vari-
ations and adaptability. Especially as algorithms evolve, new
strategies and techniques might be integrated into existing ones,
making them surpass their original classifications. Therefore,
categorizing algorithms might lead to an overly simplified per-
spective, potentially overlooking key details and mechanisms
within certain algorithms. These classification methods might
not always perfectly apply to all new algorithms or variations.
It’s worth noting that the aforementioned classification overly
reliant on the heuristic source of algorithms (like natural phe-
nomena) might not always be helpful. Some algorithms, even
if inspired by the same phenomena, might differ significantly in
their operations and performances. Lastly, even if we can clas-
sify algorithms based on their features, this doesn’t always di-
rectly guide the selection of the best algorithm. In practical ap-
plications, the performance of algorithms might be affected by
factors like problem characteristics, parameter settings, etc. Cur-
rently, there are studies focusing on this issue [46,47], attempting
to categorize algorithms from an exploitation and exploration
perspective. However, exploitation and exploration are broad
concepts that warrant further in-depth research. In light of the
shortcomings present in the aforementioned studies, some re-
searchers have proposed amore radical viewpoint, attempting to
find a unified model for all metaheuristic algorithms, and have
indeed achieved some success [22]. However, this researchmore
significantly advances the theoretical study of algorithms and
does not assist researchers in filtering and utilizing algorithms.

5 Complex network-based research methods

In recent years, complex systems have emerged as a focal point
of research, and notably, due to their ”groundbreaking contribu-
tions to our understanding of complex systems,” the 2021 No-
bel Prize in Physics was awarded to three scientists. This spot-
light not only underscores the significance and potential break-
throughs in the realm of complex systems research but also pro-
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Figure 3: Flowchart of the proposed complex network-based research methods [48].

pels forward scientific inquiry and exploration into the intri-
cate and multifaceted networks that govern various phenom-
ena within these systems. Moreover, employing complex net-
work theory to classify metaheuristic algorithms, and even to
guide the enhancement of metaheuristic algorithms, emerges
as an intriguing and challenging idea [49 – 51], linking foun-
dational physics and algorithm development through innova-
tive approaches to understanding and navigating complexity.
Complex network theory investigates the structure and behav-
ior among a multitude of interconnected elements, while meta-
heuristic algorithms involve the search and optimization of po-
tential solutions in the solution space. In metaheuristic al-
gorithms, each potential solution can be regarded as a node
within the network. Edges, on the other hand, can represent
some type of relationship between solutions, such as mutation,
crossover, or neighborhood transitions. During the search pro-
cess in metaheuristic algorithms, their populations can generate
certain network structures within the solution space. For exam-
ple, random searches might result in a random network struc-
ture, while neighborhood-based searches might produce net-
works with specific topological characteristics. Different meta-
heuristic algorithms might lead to networks with different sta-
tistical properties, which can aid in understanding the search be-
havior and efficiency of the algorithms.

Recently, our research has further revealed the correlation be-
tween the network structure of Population Interaction Network
(PIN) within algorithms and the algorithm’s performance on
specific problems. The core idea of this research approach is to
utilize complex networks to categorize the search strategy (i.e.,
exploration and exploitation) of algorithms, thereby providing
guidance for algorithm selection and improvement. In complex
networks, there are two typical network structures: one is the
network structure with a Poisson distribution, such as small-
world networks, and the other is the network structure with a
power-law distribution, like scale-free networks. In the network
structure with a Poisson distribution, interactions between ver-
tices and other vertices are more evenly distributed and random.
Meanwhile, in the network structure with a power-law distribu-
tion, some vertices have more edges than others, as shown in
Fig. 2. Metaheuristics with a Poisson distribution PIN tend to
explore the solution space, while those with a power-law distri-

bution PIN are more inclined to exploit in potentially promising
areas. When facing black-box problems, we can conjecture the
attributes of the problem itself by running algorithms with dif-
ferent PIN structures, thereby providing possible directions for
further selection and improvement of algorithms, with the spe-
cific process seen in Fig. 3. We analyzed the training of neuronal
model parameters [52], optimization of wind farm layouts [48],
and the IEEE CEC2017 benchmark function [53], obtaining the
following insights:

1) Matching Algorithm Characteristics with Problem Charac-
teristics: The research results show that, for wind farm lay-
out optimization problems, algorithms that tend to have
a Poisson distribution PIN generally perform better than
those tending to have a power-law distribution PIN. The op-
posite is true for the IEEE CEC 2017 standard function set
and dendritic neuron training problems. This indicates that
certain attributes of algorithms may be more crucial when
solving some optimization problems.

2) Complex Networks as a Tool for Categorizing Metaheuris-
tic Algorithms: By constructing and analyzing population
interaction networks, researchers can gain a deeper under-
standing of the internal workingmechanisms of algorithms.
This method provides a new perspective for understanding
and improving algorithms.

3) Providing Theoretical Guidance for Algorithm Selection
and Improvement: Traditional metaheuristic algorithm
selection methods usually require a lot of experiments
and computations. Utilizing complex network theory, re-
searchers can predict its performance on specific problems
based on the network characteristics of algorithms, thus pro-
viding more targeted guidance for algorithm selection and
improvement.

6 Conclusion

The application of complex networks to the realm of optimiza-
tion algorithm classification and selection not only represents a
novel, systematic method for navigating the expansive solution
spaces of intricate problems but also offers a platform for po-
tentially unraveling the deeper intricacies of problem-algorithm
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dynamics. The goal is to transcend beyond the current heuristic-
based paradigm and forge a pathway towards amore structured,
systematic, and theoretically grounded approach to algorithm
selection and adaptation, thereby transforming the ”alchemy” of
metaheuristic research into a more exact science.
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